38 research outputs found

    Machine learning approaches for predicting health risk of cyanobacterial blooms in Northern European Lakes

    Get PDF
    Cyanobacterial blooms are considered a major threat to global water security with documented impacts on lake ecosystems and public health. Given that cyanobacteria possess highly adaptive traits that favor them to prevail under different and often complicated stressor regimes, predicting their abundance is challenging. A dataset from 822 Northern European lakes is used to determine which variables better explain the variation of cyanobacteria biomass (CBB) by means of stepwise multiple linear regression. Chlorophyll-a (Chl-a) and total nitrogen (TN) provided the best modelling structure for the entire dataset, while for subsets of shallow and deep lakes, Chl-a, mean depth, TN and TN/TP explained part of the variance in CBB. Path analysis was performed and corroborated these findings. Finally, CBB was translated to a categorical variable according to risk levels for human health associated with the use of lakes for recreational activities. Several machine learning methods, namely Decision Tree, K-Nearest Neighbors, Support-vector Machine and Random Forest, were applied showing a remarkable ability to predict the risk, while Random Forest parameters were tuned and optimized, achieving a 95.81% accuracy, exceeding the performance of all other machine learning methods tested. A confusion matrix analysis is performed for all machine learning methods, identifying the potential of each method to correctly predict CBB risk levels and assessing the extent of false alarms; random forest clearly outperforms the other methods with very promising results.publishedVersio

    MODELING OF HYDROLOGICAL AND ENVIRONMENTAL PROCESSES THROUGH OPENMI AND WEB SERVICES

    Get PDF
    Integrated collaborative modeling has been proven lately to be the most accurate computer methodology that allows modelers to scrutinize the environmental processes using a holistic approach. Due to the dynamic and interdependent nature, such processes involve the interlinking of hydrological, meteorological, environmental, ecosystems and socioeconomical characteristics. In this paper we deal with the development and the integration of a collaborative system of models devoted to the water quantity and quality monitoring, and also to the management of water resources in a watershed. The system is also tailored by a socio-economical study that highlights the impact of the aforementioned management to the local community of the region under study. Models that integrate the collaborative system need to be coupled so that to run simultaneously under the spatial and temporal synchronization condition. To achieve such a simultaneous synchronization, the Open Modeling Interface, (OpenMI) is invoked. The system has been applied and tested to the Lake Karla watershed in Thessaly region, Greece. However due to the loose integration methodology used for its development and to its open ended property, the system can be easily parametrized to offer such an analysis on other similar case studies. An extension to the OpenMI standard provides the remote simultaneous run of models using web services and allowing the development of a cloud repository of models for future use

    Towards a low-carbon economy : A nexus-oriented policy coherence analysis in Greece

    Get PDF
    The sustainable management of natural resources under climate change conditions is a critical research issue. Among the many approaches emerged in recent times, the so-called 'nexus approach' is gaining traction in academic and policy circles. The nexus approach presupposes the analysis of bio-physical, socio-economic and policy interlinkages among sectors (e.g., water, energy, food) for the identification of integrated solutions and the support of policy decisions. Ultimately, the nexus approach aims to identify synergies and trade-offs among the nexus dimensions. Concerning policy, the nexus approach focuses on policy coherence, i.e., the systematic identification and management of trade-offs and synergies between policies across sectors. This paper investigates the coherence between policies on the water-land-energy-food-climate nexus in Greece. The systematic analysis of policy documents led to the elicitation of nexus-related policy objectives and instruments. Then, the coherence among objectives and between objectives and instruments was assessed using the methodology proposed by Nilsson et al. A stakeholder (trans-disciplinary) orientation was adopted and the need to incorporate stakeholders' recommendations as to policy coherence assessment was highlighted. Overall, the findings revealed that climate and food/agricultural policies represent critical future priorities in Greece by stimulating progress in other nexus-related policies (energy, water, land policies) and being positively influenced by them.</p

    Domestic water consumption monitoring and behaviour intervention by employing the internet of things technologies

    Get PDF
    As the water resource is becoming scarce, conservation of water has a high priority around the globe, study on water management and conservation becomes an important research problem. People are increasingly becoming more individual households, which tend to be less efficient, requiring more resources per capita than larger households. In order to address these challenges, this paper presents the achievements of monitoring domestic water consumption at the appliance level and intervening people's water usage behavior which have been made in ISS-EWATUS (http://www.issewatus.eu), an European Commission funded FP7 project. The water amount consumed by every household appliance is wirelessly recorded with the exact consumption time and stored in a central database. People's water consumption behavior is likely affected by the real-time water consumption awareness, instant practical advices regarding water-saving activities and classification of water consumption behavior for individuals, all of which are provided by a decision support system deployed as a mobile application in a tablet or any other mobile devices. Only the enhanced water consumption awareness is presented in this paper due to the space limitation. The integrated monitoring and decision support system has been deployed and in use in Sosnowiec in Poland and Skiathos in Greece since March 2015. The domestic water consumption monitoring system at appliance level and the local DSS for affecting people's water consumption behavior are innovative and have little seen before according to the knowledge of the authors.This work is part of the ISS-EWATUS project (www.issewatus.eu) and has been funded by the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no (619228). Appreciation also goes to our former research associates Dr Xi Chen, Dr Xiaomin Chen, Dr Kim Perren, and Dr Yixing Shan who have worked in Loughborough University on the project at various stages

    How effectively (or not) can science and research be turned into adopted solutions and policies?

    Get PDF
    How to create an impact on policies, operations, and society across the interdisciplinary sectors in which we - as researchers - are involved? Managing the Water-Energy-Food-Ecosystem (WEFE) nexus and pursuing climate resilience is the core task of several European (EU) projects and is in the highest interests of our society. The European Commission’s research funding programs attempt to address a large range of topics and offer unique opportunities for scientists to create a tangible impact on the environment and society. We are currently involved in different EU projects, including AWESOME (PRIMA), which aims at managing the WEFE nexus across sectors and scales in the South Mediterranean exploring innovative technologies such as soilless agriculture in the Nile Delta; CLINT (H2020), which is developing Machine Learning (ML) techniques to improve climate science in the detection, causation, and attribution of extreme events to advance climate services; IMPETUS (H2020), whose efforts are dedicated on the elaboration of climate data space enhanced with ML algorithms to support the elaboration of climate policies; REACT4MED (PRIMA), which focuses on combating land degradation and desertification by improving sustainable land and water management through the identification of local good restoration practices and their potential upscaling; Gaza H2.0: Innovation and water efficiency (EuropeAid), which aims at promoting efficient and sustainable water supply and demand as well as knowledge transfer to enhance resilience against water scarcity in Gaza; GoNEXUS (H2020), which is developing an evaluation framework to design and assess innovative solutions for an efficient and sustainable coordinated governance of the WEFE nexus; NexusNet (COST), which creates the network and the community of WEF nexus advocates for a low-carbon economy in Europe and beyond; NEXOGENESIS (H2020), which focuses on streamlining water-related policies with artificial intelligence and reinforcement learning; MAGO (PRIMA), which builds web applications for water and agriculture in the Mediterranean; BIONEXT (HEU), which is interlinked with the Intergovernmental Panel on Biodiversity and Ecosystem Services and aims at creating transformative change through nexus analysis. Despite the efforts of the scientific community, there is still a gap between research and practice. Researchers face difficulties in engaging stakeholders and decision-makers to jointly explore and shape the developed solutions, as well as to truly adopt them. The large-scale implementation of suitable technological solutions might require time and financial resources beyond the project’s lifetime and capacity. The lack of follow-ups and collaboration among projects with similar aims can be some of the reasons lying behind. Also, the complexity of finding open data in data-scarce regions makes results less trustable in the eyes of international agencies, while the pressure of publishing often turns research tasks into pure academic exercises. To what extent does the European strategy work? Is it only gaining scientific advances or also leading to local policy changes? Engaging important local actors (e.g., ministries), small-medium enterprises and societal members in the project consortia, empowering scientists by ensuring feedback loops with local governmental agencies, including the human dimension into modelling, and running effective capacity-building campaigns can be some food for thoughts to shape new strategies

    Effects of the 2021 La Palma volcanic eruption on groundwater resources (part I): Hydraulic impacts

    Get PDF
    The 2021 volcanic eruption in the Cumbre Vieja mountain range on La Palma Island (Canary Islands, Spain) raised concerns regarding the potential impact on groundwater resources. This study is the first part of a series of papers investigating those impacts, and focuses on the hydraulic impacts of the eruption, while subsequent papers will explore the geochemical consequences. Three boreholes equipped with sensors to measure hydraulic head, temperature, and electrical conductivity of groundwater were installed near the volcano. Monitoring started during the eruption and continued a year after it. Statistical analysis were performed to assess the relationship between the measured variables and real-time seismic-amplitude measurements (RSAM). In addition, the possibility of groundwater vaporization due to magma emergence was assessed with a groundwater flow numerical modelling of the island. Correlation coefficients were computed to assess the linear relationship between groundwater parameters and seismic signals, observing a statistically significant association, and suggesting near-instantaneous variations in parameters such as groundwater levels and EC. Different response patterns of groundwater levels were observed in recharging areas in highlands compared to discharge areas, showing an opposite correlation direction. Deduction of natural trends from the linear regression models of head and RSAM two months after the eruption revealed a more predictable impact on the groundwater system, as the hydrogeological system adjusts to the volcanic activity and its effects on the aquifer. The hydrogeological simulation of the "magma pumping effect" suggested that groundwater extraction was possible, but the absence of an appropriate groundwater monitoring network made it impossible to determine the amount of water extracted from the aquifer. The uncertainty analysis showed values up to 2000 m3·day−1. These findings have important implications for understanding the negative impacts of volcanic eruptions on groundwater resources, highlighting the need for regular monitoring and assessment by hydrogeologists and water management professionals

    Effects of the 2021 La Palma volcanic eruption on groundwater resources (part II): Hydrochemical impacts

    Get PDF
    Volcanic eruptions can have significant implications for the management and sustainability of water resources in volcanic islands. The recent 2021 eruption of the Tajogaite volcano in La Palma Island (Canary Islands, Spain) raised concerns regarding its potential impact on groundwater resources. This study is the second part of a series investigating the hydrogeochemical impacts of the eruption. The study involved conducting three groundwater sampling campaigns during the eruption and two after the eruption, six months and one year after the eruption ceased. A total of 15 monitored points, including piezometers, wells, water galleries, and main gully collector of the island, all relatively close (2–15 km) to the erupted volcano, were sampled for the analysis of major, minor, and trace elements, physiochemical parameters, which were measured on-site. Statistical analyses were performed to assess the differences in groundwater composition before, during, and after the eruption. To evaluate the differences in water quality compared to pre-eruption events, 33 additional historical groundwater samples provided by the local Water Authority were assessed, and 103 groundwater analysis results from the groundwater data base of the Spanish National Geological Survey (IGME) were considered. The results of the study showed low but statistically significant changes in pH, T, conductivity and groundwater composition, mainly related to the high increases in several trace element concentrations, such as Al, Cr, Fe, Mo, Ni, Sr, Th, Tl, V, Zn, Ba, Cd, Co, Cu, Pb and U, with increments in various orders of magnitude for several elements. This increase was found to be highly influenced by the sample distance to the volcano during the eruption stage. The significance of these findings lies in their usefulness to enhance our understanding of the effects of volcanic eruptions on groundwater quality resources and demonstrate their resilience to this hazardous phenomenon, which ultimately underscores their reliability

    Using System Dynamics Modelling to visualize the effects of resource management and policy interventions on biodiversity at a regional scale

    No full text
    A methodology and a System Dynamics Model is constructed, using published data from the IUCN Red List Index database, that can be used to quantify the biodiversity status. The methodology is implemented for the Nestos River catchment in Greece. It is intended to help the authorities run scenarios of different interventions, addressing the specific problems and threats to the local ecosystem that each community might be facing. The methodology enables them to see and quantify biodiversity improvements as a result of these interventions. It compares and contrasts four specific threats to the ecosystem, identified from stakeholder consultation workshops, namely solid waste, agriculture, domestic wastewater and dams and water management/use. The effects of each one of the interventions to the species in the region and to the modified Red List Index overall are presented and compared, showcasing the dams as the most deleterious threat to the local ecosystem. Finally, an easy to use interface is developed and introduced to better connect the stakeholders with the scientific analysis and facilitate informed decision-making that could lead to smarter policy implementation. This would result insetting priorities for interventions and investments concerning improvement of the ecological status and biodiversity

    Erosion probability for biofilm modeling: analysis of trends

    No full text
    This study presents the strengths and weaknesses of a biofilm erosion probability algorithm that can be used in cellular automaton and individual-based biofilm simulation models. The erosion probability is calculated using data on localized biofilm mechanical properties, expressed through the composite biofilm Young's modulus-a measure of biofilm strength that varies in time and space-and on fluid hydrodynamic shear stress. Analysis of trends shows that biofilm detachment is the process that results from the competition between biofilm strength and hydrodynamic shear stress exerted on it by the fluid, with hydrodynamics being more important when biofilm strength is low and vice versa. From the modeling sample analyzed in this study, it is evident that for biofilms with cluster and mushroom formations, erosion probabilities are lower in the crevices formed between two clusters-where substrate is depleted-and higher at the top of the clusters where there is fresh biomass growth. When compared to other detachment methodologies extensively used by biofilm modeling researchers, such as the detachment speed that is a function of the square of the distance to the solid substratum, it is proved that the probability of erosion algorithm would give similar results

    Cross-Mapping Important Interactions between Water-Energy-Food Nexus Indices and the SDGs

    No full text
    Worldwide, many developing countries are making efforts to achieve sustainability through the 17 SDGs and at the same time to contribute to environmental security. The Nexus approach enables a more integrated and sustainable use of resources that extends beyond traditional siloed thinking and is applicable at multiple scales. This is especially important in a globalized world where collaboration is becoming increasingly important for societies. In this framework, we present an analysis that will assist policymakers set priorities in investments by investigating the influence of the WEF nexus on the 17 SDGs and vice versa. Following the Nexus approach may thus enhance synergies and contribute to increased performance in connected SDGs that are positively influenced. In this article, we present an analysis that allows stakeholders to adapt it to their specific needs by entering new scores based on the characteristics of each case study; the results of this methodology should be considered in light of the specific conditions, including socio-cultural aspects and geographical, geopolitical, and governance realities, as well as the scale of the case study in question. A Fuzzy Cognitive Map analysis is also conducted on the scores to quantify SDG impact and identify the SDGs that most strongly &ldquo;influence&rdquo; nexus-coherent policies and the SDGs that are most strongly &ldquo;influenced by&rdquo; the nexus. This is achieved by analyzing the causality in this complex system of positive and negative interlinkages. Through this analysis, three SDGs, namely SDG 2 (Food), SDG 6 (Water) and SDG 7 (Energy), are indicated as the most influenced by the WEF nexus, revealing either synergies or trade-offs, while other SDGs are identified as having little interaction with the WEF nexus system
    corecore